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Abstract. A self-organized model with social percolation process is proposed to describe the propagations
of information for different trading ways across a social system and the automatic formation of various
groups within market traders. Based on the market structure of this model, some stylized observations
of real market can be reproduced, including the slow decay of volatility correlations, and the fat tail
distribution of price returns which is found to cross over to an exponential-type asymptotic decay in
different dimensional systems.

PACS. 89.90.+n Other topics of general interest to physicists – 87.23.Ge Dynamics of social systems –
05.45.Tp Time series analysis

Recently, microscopic models for financial markets
have attracted more and more interests [1–8]. These mod-
els are based on the empirical findings of high-frequency
market data, such as the fat tails in the distribution
of price changes, the fast decaying of linear correlation,
as well as the existence of long-term volatility corre-
lations [2–4,9], and the intrinsic structure of financial mar-
kets, including the mutual interactions among market par-
ticipants through herding and imitation behaviors [6,7] or
switching from one strategy group to another [8].

Although different mechanisms are used in these mi-
croscopic models to simulate the price formation pro-
cesses, some of the stylized observations of real mar-
kets can be reproduced. In one set of these models, the
Cond-Bouchaud herding model [6] and the related perco-
lation models [10,11], the power-law asymptotic behavior
in the tail of price return has been obtained, with an ex-
ponent well outside the stable Lévy regime [9] as found in
real data [12,13]. Recently, this Cond-Bouchaud percola-
tion model has been modified by introducing a feedback
mechanism between price return R and trader activity
a: a → a + αR, where α is the factor representing the
sensitivity to price fluctuations [11]. Then the volatility
clustering can be produced, and more interestingly, the
empirically observed asymmetric pattern of sharp peaks
and flat troughs in the market prices [14] can be incorpo-
rated.

In the percolation-type model [6,10,11], investors are
randomly distributed on a lattice with certain concentra-
tion and through the neighboring connections they form
the percolation clusters, corresponding to herding groups
or companies with probability a of trading (activity) which
is set to be the same for all groups. However, the concen-
tration of investors on the lattice is to be preset for obtain-
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ing reasonable results. Here we introduce a self-organized
model for information spread based on the social per-
colation process [15,16], where the investor groups with
various trading activities and sizes are formed automati-
cally as a result of the propagations of trading information
across a social network.

Consider a d dimensional lattice representing a social
system with each site located by a trader, that is, the
whole lattice is occupied. When participating in the mar-
ket each trader obeys a certain trading way, which can
be simply represented by the trading activity measuring
the frequency of putting the buy or sell orders, and she
may change her behavior due to the influence of outside
information about trading ways if she believes that the
information is attractive enough and the new trading way
can lead to more profits. Suppose that the information
of various trading ways is not public, and spreads among
traders according to the communication structure of the
social system, which for simplification, is considered as the
transfer along nearest-neighbor links of lattice. Thus, a
higher dimensional lattice corresponds to the society with
more connections among agents [16]. All the traders ac-
cepting the same information form a cluster or group and
will exhibit the same behavior in the market as they obey
the same trading way.

First, we study the process of information spread for
different trading ways, characterized simply by activity
a(τ) at each spread step τ (and the sensitivity to price
change α(τ) if considering the feedback effect as described
above [11]). In the way of larger a(τ) the trading will
be made more frequently. Each information of trading
way has an attractiveness q(τ), related to trader’s personal
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opinion about its profitability. The dynamics of the
model is:

– At one step τ , a new information of trading way with
attractiveness q(τ) and activity a(τ) both determined
randomly appears and starts at few informed sites
to spread by nearest-neighbor connections among the
traders with personal preferences pi (both the values
of q and pi are set between 0 and 1 and δp shown below
is a small fixed parameter).

– Each step τ consists of consecutive substeps of the
spread between traders: After receiving the informa-
tion from one of her neighbors at one substep, trader
i will accept it and obey this new trading way if its
attractiveness is larger than her personal preference,
i.e., q(τ) > pi. Then she will spread the information
further to the other neighbors, and increase her pref-
erence by δp, i.e., pi → pi + δp, as it should be more
difficult and needs larger attractiveness for someone to
change her mind at the next step τ +1 to another new
way. Otherwise, the trader i will keep the old state,
including the old trading way and preference, and will
not spread the message to her neighbors until the end
of this step τ . Then, the next substep begins with the
similar judgement and spread procedure.

– The spread of one step τ will continue until there is
no source of information for propagation and the pro-
cedure stops by itself, that is, all the neighbors of all
the traders accepting the information have already re-
ceived it, and a trader group or cluster with members
accepting the common information is formed. Then the
next step τ + 1 starts with the incoming of another
new information of attractiveness q(τ +1) and activity
a(τ + 1), also selected randomly between 0 and 1, and
has the spread procedure similar to above. In partic-
ular, for a trader i belonging to a cluster of previous
information, when she receives the new information
with q(τ + 1) > pi she will accept it and change her
trading way to the new one. Consequently, the size of
that old cluster will decrease by 1 with the expansion
of a new group. Otherwise, the trader will still remain
in the old cluster. Thus, if the new information is at-
tractive enough, the spread of it will form a new group
which may invade the old ones or even make some of
them disappearing. Up to now, all traders within the
same cluster share the same activity a(τ) which was
valid when that cluster was formed.

Compared with the social percolation model [15,16], here
there is no feedback on the attractiveness q of information,
instead, new information with randomly selected attrac-
tiveness appears at each new step. Moreover, the prefer-
ences of investors not accepting the new information or
uninformed are not changed, instead of decreasing, and
then the trader preferences increase with the acceptance
of more and more information. After a large number of
steps for the spread of different trading information, the
trader preferences of the system are close to the upper
limit 1 and the newly appearing information has little
influence on the trader structure. Thus, through a self-
organized process the market traders in this social system

automatically form groups or clusters of various sizes and
activities due to the acceptance of different trading infor-
mation, and these clusters may correspond to the herding
groups of investors who imitate each other or individual
groups with members having the same trading activity a
and acting in the same manner. Here the groups or clus-
ters with larger size correspond to the agents in the real
market who have bigger influence, and different activities
of groups represent the phenomenon of the real market
that the agents have different trading timescale and some
of them trade more frequently than the other.

Figure 1 shows the results of our simulations for dif-
ferent hypercubic lattices with length L and dimension
d, where ns denotes the average number of clusters con-
taining s sites, and only two parameters are to be chosen:
δp = 0.001 and τ = 105 steps. Initially the trader prefer-
ences pi are distributed randomly between 0 and 1, and
each step starts with one randomly selected site on one
boundary. Thus, the sites close to this boundary represent
the more informed traders in the market. A Leath-type al-
gorithm [17] is used for the spread procedures across the
lattices with helical boundary conditions. From Figure 1 a
power law behavior similar to the percolation structure is
obtained, but only for small and intermediate sizes of clus-
ters. Compared with percolation theory [18], the effective
power law exponent in the present model is smaller and
can be lower than 2 in low dimensions with a finite value
of
∑
sns which is very close to 1. This phenomenon for

the slower decaying of ns may be attributed to the much
heavier tail in the distribution of cluster sizes in present
model. In the percolation lattice a cluster with size roughly
comparable to the total system size (largest or ”infinite”
percolating cluster) appears at or above the percolation
threshold, while in the model here an earlier percolating
cluster may be invaded by new-coming information that is
attractive enough compared with traders’ preferences, and
then its size is diminished with the formation of more and
smaller clusters. Thus, in the present model the sites be-
longing to the same cluster need not be nearest-neighbors
to each other as in percolation models [10]. For large s, it
is not clear whether an asymptotic stretched exponential
behavior similar to percolation structure above the criti-
cal threshold exists in present model, and more detailed
work is needed.

Next, we study the trading behaviors of these market
groups or clusters that are determined after enough steps
of the spreading process as described above. For simplic-
ity, during the trading and price formation processes sim-
ulated below, the influence of new-coming information,
i.e., the change of market structure for trader groups, is
not considered. The trading of each group j is represented
by an activity aj obtained from different information in
the spread process and randomly distributed between two
limits amax and amin, and then at each time step, group
j decides to make orders with probability aj (with equal
probability aj/2 for buying or selling) or be inactive with
probability 1− aj . This mechanism does not require that
each buy order should match a sell order, and the bal-
ance can be made by assuming the involvement of market
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Fig. 1. Log-log plot of the cluster numbers containing s sites after τ = 105 steps of the spread model with δp = 0.001, for 10012

square (averaged over 230 lattices), 1013 simple cubic (190 lattices), and 77 hypercubic (100 lattices) systems. The slope of the
straight line is −2.
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Fig. 2. Semi-log plot of the probability distribution of the normalized returns for different time intervals ∆t = 1, 2, 10, and
100 on 1013 cubic lattice with amax = 0.02 and amin = 0.0001 (averaged over 190 lattices). A crossover toward the Gaussian
distribution (solid line) is shown with the increasing of time interval.
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Fig. 3. Replot of Figure 2 for time interval ∆t = 1 by showing ln |r|P (r) as a function of the absolute normalized return |r|,
with a straight line of slope −0.96.

makers outside the model. Assume that all investors in one
group contribute the same amount of trading orders, and
then the trading amount of that group is proportional to
the group size. Moreover, the price return R at each time
step t (used for trading process and different from the
spread step τ), which is defined as the change over time
interval ∆t of logarithm of price, is supposed to be propor-
tional to the excess demand [6,19], that is, the difference
between demand and supply obtained from the sum over
all active clusters, and normalized by the system size Ld,
that is, R→ R/Ld, to avoid the influence of lattice size.

Figures 2 and 3 give the results for the probability dis-
tribution of price returns on the simple cubic lattice, and
similar behaviors are found for other dimensions from two
to seven. In the simulations, the unit of time increment∆t
is to be chosen appropriately in order to avoid the fluc-
tuations due to random decisions, and here we select 5
time steps as the unit interval ∆t = 1. Figure 2 shows a
semi-log plot of the probability distribution of normalized
returns, defined as r = (R − 〈R〉)/σ with the average of
return 〈R〉 (about 0) over the time series and the volatil-
ity σ = (〈R2〉 − 〈R〉2)1/2, for amax = 0.02, amin = 0.0001,
and different time scales ∆t = 1, 2, 10, and 100. With
the increasing of time interval ∆t, a crossover toward the
Gaussian distribution is observed from the figure, in agree-
ment with the finding of empirical financial data [13].

In our simulations the asymptotic form of the fat
tail distribution for small time scales is exponential-type,
faster than the power law behavior with exponent about
4 found in recent empirical studies [12,13] and theoreti-
cal simulations [7,8,10]. Similar phenomena can be found

in many real systems where the probability distributions
often cross over to an exponential-type decay and exhibit
curvature in the log-log plots after a limited range of scales
for power law behavior, and a stretched exponential de-
scription has been shown to account well for many natural
and economic distributions [20]. Very recently, an ana-
lytic form for the whole range of probability distribution
and the corresponding Langevin equation have been de-
rived [21] based on a theorem of general stationary ran-
dom process and the Hong Kong Hang Seng Index data,
and the asymptotic behavior for large price changes is an
exponential-type decay: P (r) ∼ exp(−β|r|)/|r|. Figure 3
is transformed from Figure 2 by plotting ln |r|P (r) as a
function of the absolute normalized return |r| for the data
of time interval ∆t = 1. Good fits to straight line in the
tail region are found with β = 0.96 ± 0.02 (positive tail)
and 0.96 ± 0.03 (negative tail) (fitted over well averaged
region).

However, in above simulations the persistence of
volatility correlation is absent, similar to the standard
Cond-Bouchaud model [6]. To reproduce the empirical
facts of volatility clustering and asymmetry of bubbles and
crashes in stock markets, we follow the method in [11] to
introduce a feedback between price fluctuations and group
behaviors at each time step: aj(t + 1) = aj(t) + αjR,
that is, the investors are encouraged by the price in-
crease with more tradings, and are more prudent when
price decreases. We keep aj in the interval from amin to
amax. Furthermore, as the trading ways of the groups are
different with different viewpoints on the price changes,
in our simulations the parameters αj are set randomly
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Fig. 4. Semi-log plot of the probability distribution of the normalized ∆t = 1 returns r with αmax = 0.1, αmin = 0, amax = 0.2,
and amin = 0.003, for 10012 square (200 lattices), 1013 cubic (100 lattices), and 77 hypercubic (100 lattices) systems. The
feedback mechanism between price fluctuation and group activities is considered.
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Fig. 5. Replot of Figure 4 for ln rP (r) as a function of the normalized positive return r, with a straight line of slope −1.1.
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Fig. 6. Autocorrelations for the volatility in different simulations with the same parameters as Figure 4. The slow decay is
displayed, and the inset gives the corresponding log-log plots which exhibit an asymptotic power-law behavior with an exponent
about 0.4 for different systems.
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Fig. 7. Time series of the logarithm of price in one simulation with the same parameters as Figure 4, except for amin = 0.0003,
on a 313 cubic lattice.
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between two limits αmax and αmin. Figures 4 to 6 show
the results of simulations in two, three, and seven dimen-
sions, where αmax = 0.1, αmin = 0, and the cutoffs of
activity amax = 0.2 and amin = 0.003. To make the ini-
tial values of group activities irrelevant, the first 106 time
steps of the simulations are skipped.

The properties of fat tails in the probability distribu-
tion of normalized price returns r are shown in Figure 4,
for different simulations of time interval ∆t = 1 in square,
cubic, and d = 7 hypercubic systems, respectively. The
exponential-type tail behaviors can also be observed in
the figure, and similarly we transform Figure 4 into Fig-
ure 5 by plotting ln rP (r) vs. normalized positive returns
r, with the similar behaviors for negative ones. In the tail
region good fits to straight line similar to that of the sim-
ulations without feedback effect are obtained, with pa-
rameter value β ≈ 1.1 for different dimensional systems
(β = 1.05± 0.01 for size 10012, β = 1.108± 0.007 for size
1013, and β = 1.109 ± 0.007 for size 77, fitted over well
averaged data). Simulations for other dimensions give the
similar results.

The persistence of long-range volatility correlation,
which is defined as the autocorrelation between the ab-
solute value of price return, i.e., [〈|R(t)||R(t + T )|〉 −
〈|R(t)|〉〈|R(t + T )|〉]/[〈|R(t)|2〉 − 〈|R(t)|〉2], is shown in
Figure 6 for 2, 3, and 7 dimensional lattices and time scale
∆t = 1, while the linear autocorrelation for the price re-
turns is around zero. The inset of Figure 6 gives the slow
decay of volatility correlations in log-log plots, represent-
ing an asymptotic power-law with an exponent about 0.4,
similar to the empirical observation [3]. Volatility cluster-
ing as well as the asymmetry between sharp peaks and
shallow valleys of the prices found empirically [14] are
shown in Figure 7, which gives the time series of one sim-
ulation on a 313 simple cubic lattice.

Compared with the Cond-Bouchaud percolation
models, where the system is fixed at (or slightly above)
the percolation threshold or set at varying concentrations
with results to be integrated over [10,11], the model here
can automatically generate the market structure among
traders, i.e., the trading groups or clusters, based on the
social percolation process which is intrinsically different
from the Cond-Bouchaud one, and the largest cluster need
not be omitted for obtaining reasonable results. More-
over, in the present model the trading activity for different
groups are different, reflecting the fact that in real mar-
ket the agents have various timescales or frequencies of
trading.

The qualitative results of the model here are ro-
bust with respect to parameters. The simulations with

different parameters all lead to the same stylized features,
including the properties of cluster size distribution after
large enough steps of information spread, the fat tail of
price return distribution described by exponential-type
asymptotic decay, the long-range persistence of volatility
autocorrelations, and the asymmetry between peaks and
troughs of the prices. Different dimensional lattices sim-
ulate the different social societies with various degree of
personal connections, and the dimensionality of the sys-
tem does not influence the major results of the model.

The author would like to thank Dietrich Stauffer and Sorin
Solomon for very helpful discussions and comments. This work
was supported by SFB 341.

References

1. G.J. Stigler, J. Business 37, 117 (1964).
2. J.-P. Bouchaud, M. Potters, Theory of Financial Risk

(Cambridge University Press, Cambridge, 2000).
3. R. Mantegna, H.E. Stanley, An Introduction to Econo-

physics: Correlations and Complexity in Finance (Cam-
bridge University Press, Cambridge, 1999).

4. J.D. Farmer, Computing in Science and Engineering 1, 26
(1999).

5. M. Levy, H. Levy, S. Solomon, Economics Lett. 45, 103
(1994); J. Phys. I France 5, 1087 (1995).

6. R. Cont, J.P. Bouchaud, Macroeconomic Dynamics (in
press) and e-print cond-mat/9712318.

7. V.M. Eguiluz, M.G. Zimmermann, e-print, cond-mat/

9908069.
8. T. Lux, M. Marchesi, Nature 297, 498 (1999).
9. R.N. Mantegna, H.E. Stanley, Nature 376, 46 (1995).

10. D. Stauffer, D. Sornette, Physica A 271, 496 (1999).
11. D. Stauffer, N. Jan, Physica A 277, 215 (2000).
12. T. Lux, Appl. Financial Economics 6, 463 (1996).
13. P. Gopikrishnan, V. Plerou, L.A.N. Amaral, M. Meyer,

H.E. Stanley, Phys. Rev. E 60, 5305 (1999).
14. B.M. Roehner, D. Sornette, Eur. Phys. J. B 4, 387 (1998).
15. S. Solomon, G. Weisbuch, L. de Arcangelis, N. Jan, D.

Stauffer, Physica A 277, 239 (2000).
16. Z.F. Huang, Int. J. Mod. Phys. C 11, 287 (2000).
17. H.G. Evertz, J. Stat. Phys. 70, 1075 (1993).
18. D. Stauffer, A. Aharony, Introduction to Percolation The-

ory (Taylor and Francis, London, 1994); M. Sahimi, Ap-
plications of Percolation Theory (Taylor and Francis, Lon-
don, 1994).

19. J.D. Farmer, e-print, adapt-org/9812005.
20. J. Laherrère, D. Sornette, Eur. Phys. J. B. 2, 525 (1998).
21. L.H. Tang, Z.F. Huang, preprint.


